Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
public:fs_astronomie [2023/05/16 11:40] psio created |
public:fs_astronomie [2023/05/16 17:14] (current) psio |
||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== | + | ====== |
+ | ===== Constants to know from heart ===== | ||
+ | |||
+ | ^Name ^Equation ^Description ^ | ||
+ | |c - Velocity of light |$c = 3 * 10^{8}\frac{m}{s}$ |Velocity of light in vacuum | | ||
+ | |AU - Astronomical Unit |$1 AU = 1,5 * 10^{11}m$ |The mean distance from earth to sun | | ||
+ | |Ly - Lightyear|$1Ly \approx 9,5 * 10^{15}m$ |Distance light travels in one year| | ||
+ | |pc - Parsec|$1 pc \approx 3Ly$|One parsec is the dinstance, from wich 1 AU looks like an angle of 1 second| | ||
+ | |||
+ | ===== Formulars ===== | ||
+ | ==== Keplers 3rd Law ==== | ||
+ | ^Name ^ Formula | ||
+ | |Keplers 3rd Law |\begin{align*}a^3 = \frac{GMP^2}{4\pi^2} \end{align*} | ||
+ | a &= \text{Semi-major axis of elliptical orbit}\\ | ||
+ | G & | ||
+ | M & | ||
+ | P & | ||
+ | \end{align*} | ||
+ | |Keplers 3rd law in simplified units|\begin{equation} | ||
+ | a^3 = P^2M | ||
+ | \end{equation} |\begin{align*} | ||
+ | a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ | ||
+ | M & | ||
+ | P & | ||
+ | \end{align*} | ||
+ | |Keplers 3rd law when mass of planet is much smaller than the star $\frac{M}{M_\odot} \approx 1$ | \begin{equation} | ||
+ | a^3 = P^2 | ||
+ | \end{equation} |\begin{align*} | ||
+ | a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ | ||
+ | P & | ||
+ | \end{align*} | ||
+ | |||
+ | ==== Small angle ==== | ||
+ | |||
+ | |\begin{equation} | ||
+ | \frac{D2}{D1} = \sin{\alpha} \approx \alpha | ||
+ | \end{equation} |\begin{align*} | ||
+ | \alpha &= \text{viewing angle (for small angles) in rad}\\ | ||
+ | D1 & | ||
+ | D2 & | ||
+ | \end{align*}| | ||