public:fs_astronomie

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
public:fs_astronomie [2023/05/16 11:41]
psio
public:fs_astronomie [2023/05/16 17:14] (current)
psio
Line 1: Line 1:
-====== Formelsammlung Astronomie ======+====== Astronomy cheat sheet ======
  
-\subsection{Velocity of light} +===== Constants to know from heart =====
-\begin{equation} +
-    c 3 * 10^{8}\frac{m}{s} +
-\end{equation}+
  
-\subsection{AU - Astronomical unit} +^Name ^Equation ^Description ^ 
-The mean distance from earth to sun +|c - Velocity of light |$c = 3 * 10^{8}\frac{m}{s}$ |Velocity of light in vacuum | 
-\begin{equation} +|AU - Astronomical Unit |$1 AU = 1,5 * 10^{11}m$ |The mean distance from earth to sun | 
-    1 AU = 1,5 * 10^{11}m +|Ly - Lightyear|$1Ly \approx 9,5 * 10^{15}m$ |Distance light travels in one year| 
-\end{equation}+|pc - Parsec|$1 pc \approx 3Ly$|One parsec is the dinstance, from wich 1 AU looks like an angle of 1 second|    
  
 +===== Formulars =====
 +==== Keplers 3rd Law  ====
 +^Name  ^  Formula  ^  where  ^
 +|Keplers 3rd Law  |\begin{align*}a^3 = \frac{GMP^2}{4\pi^2} \end{align*}  |\begin{align*}
 +a &= \text{Semi-major axis of elliptical orbit}\\
 +G &=\text{constant}\\
 +M &=\text{total mass of orbiting bodies}\\
 +P &=\text{orbital periode}\\
 +\end{align*}  |
 +|Keplers 3rd law in simplified units|\begin{equation}
 +    a^3 = P^2M
 +\end{equation} |\begin{align*}
 +a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\
 +M &=\text{total mass  of bodies in masses of sun}\\
 +P &=\text{orbital period in years}\\
 +\end{align*}  |
 +|Keplers 3rd law when mass of planet is much smaller than the star $\frac{M}{M_\odot} \approx 1$ | \begin{equation}
 +    a^3 = P^2
 +\end{equation} |\begin{align*}
 +a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\
 +P &=\text{orbital period in years}\\
 +\end{align*}  |
 +
 +==== Small angle  ====
 +
 +|\begin{equation}
 +    \frac{D2}{D1} = \sin{\alpha} \approx \alpha 
 +\end{equation} |\begin{align*}
 +\alpha &= \text{viewing angle (for small angles) in rad}\\
 +D1 &=\text{Distance to object in parsec}\\
 +D2 &=\text{Extension distance in AU}\\
 +\end{align*}|