Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
public:fs_astronomie [2023/05/16 15:43] psio [Table] |
public:fs_astronomie [2023/05/16 17:14] (current) psio |
||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== | + | ====== |
- | \section{Constants to know from heart} | + | ===== Constants to know from heart ===== |
- | \subsection{Velocity of light} | + | ^Name ^Equation ^Description ^ |
- | \begin{equation} | + | |c - Velocity of light |$c = 3 * 10^{8}\frac{m}{s}$ |Velocity of light in vacuum | |
- | | + | |AU - Astronomical Unit |$1 AU = 1,5 * 10^{11}m$ |The mean distance from earth to sun | |
- | \end{equation} | + | |Ly - Lightyear|$1Ly |
+ | |pc - Parsec|$1 pc \approx 3Ly$|One parsec is the dinstance, from wich 1 AU looks like an angle of 1 second| | ||
- | \subsection{AU - Astronomical unit} | + | ===== Formulars ===== |
- | The mean distance from earth to sun | + | ==== Keplers 3rd Law ==== |
- | \begin{equation} | + | ^Name ^ Formula |
- | 1 AU = 1,5 * 10^{11}m | + | |Keplers 3rd Law |\begin{align*}a^3 = \frac{GMP^2}{4\pi^2} \end{align*} |\begin{align*} |
- | \end{equation} | + | |
- | + | ||
- | \subsection{pc - parsec} | + | |
- | One parsec is the dinstance, from wich 1 AU looks like an angle of 1 second. | + | |
- | \begin{equation} | + | |
- | 1 pc \approx 3 lightyears | + | |
- | \end{equation} | + | |
- | + | ||
- | \section{Formulars} | + | |
- | + | ||
- | \subsection{Keplers 3rd Law} | + | |
- | \begin{equation} | + | |
- | \label{Kepler' | + | |
- | | + | |
- | \end{equation} | + | |
- | where: | + | |
- | \begin{align*} | + | |
a &= \text{Semi-major axis of elliptical orbit}\\ | a &= \text{Semi-major axis of elliptical orbit}\\ | ||
G & | G & | ||
M & | M & | ||
P & | P & | ||
- | \end{align*} | + | \end{align*} |
- | + | |Keplers 3rd law in simplified units|\begin{equation} | |
- | + | ||
- | \subsection{Keplers 3rd Law in simplified units} | + | |
- | \begin{equation} | + | |
a^3 = P^2M | a^3 = P^2M | ||
- | \end{equation} | + | \end{equation} |
- | where: | + | |
- | \begin{align*} | + | |
a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ | a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ | ||
M & | M & | ||
- | P & | + | P & |
- | \end{align*} | + | \end{align*} |
- | + | |Keplers 3rd law when mass of planet is much smaller than the star $\frac{M}{M_\odot} \approx 1$ | \begin{equation} | |
- | when mass of planet is much smaller than the star, then $\frac{M}{M_\odot} \approx 1$, so: | + | |
- | \begin{equation} | + | |
a^3 = P^2 | a^3 = P^2 | ||
- | \end{equation} | + | \end{equation} |
+ | a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ | ||
+ | P & | ||
+ | \end{align*} | ||
- | \subsection{Small angle formular} | + | ==== Small angle ==== |
- | \begin{equation} | + | |
+ | |\begin{equation} | ||
\frac{D2}{D1} = \sin{\alpha} \approx \alpha | \frac{D2}{D1} = \sin{\alpha} \approx \alpha | ||
- | \end{equation} | + | \end{equation} |
- | where: | + | |
- | \begin{align*} | + | |
\alpha &= \text{viewing angle (for small angles) in rad}\\ | \alpha &= \text{viewing angle (for small angles) in rad}\\ | ||
D1 & | D1 & | ||
D2 & | D2 & | ||
- | \end{align*} | + | \end{align*}| |
- | + | ||
- | ^ $\sum_{n=0}^{\infty} \frac{1}{x^n}$ | + | |
- | | $1$ | $\infty$ | + | |