public:fs_astronomie

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
public:fs_astronomie [2023/05/16 17:02]
psio
public:fs_astronomie [2023/05/16 17:14] (current)
psio
Line 1: Line 1:
-====== Formelsammlung Astronomie ======+====== Astronomy cheat sheet ======
  
 ===== Constants to know from heart ===== ===== Constants to know from heart =====
  
 ^Name ^Equation ^Description ^ ^Name ^Equation ^Description ^
-|c - Velocity of light |$c = 3 * 10^{8}\frac{m}{s}$ | | +|c - Velocity of light |$c = 3 * 10^{8}\frac{m}{s}$ |Velocity of light in vacuum 
-|AU - Astronomical Unit |$1 AU = 1,5 * 10^{11}m$ |unit The mean distance from earth to sun |+|AU - Astronomical Unit |$1 AU = 1,5 * 10^{11}m$ |The mean distance from earth to sun |
 |Ly - Lightyear|$1Ly \approx 9,5 * 10^{15}m$ |Distance light travels in one year| |Ly - Lightyear|$1Ly \approx 9,5 * 10^{15}m$ |Distance light travels in one year|
 |pc - Parsec|$1 pc \approx 3Ly$|One parsec is the dinstance, from wich 1 AU looks like an angle of 1 second|     |pc - Parsec|$1 pc \approx 3Ly$|One parsec is the dinstance, from wich 1 AU looks like an angle of 1 second|    
  
-==== Formulars ==== +===== Formulars ===== 
- +==== Keplers 3rd Law  ==== 
-^Name ^Formula ^where ^Description +^Name   Formula   where  
-|Keplers 3rd Law|\begin{align*}a^3 = \frac{GMP^2}{4\pi^2} \end{align*}|\begin{align*}+|Keplers 3rd Law  |\begin{align*}a^3 = \frac{GMP^2}{4\pi^2} \end{align*}  |\begin{align*}
 a &= \text{Semi-major axis of elliptical orbit}\\ a &= \text{Semi-major axis of elliptical orbit}\\
 G &=\text{constant}\\ G &=\text{constant}\\
 M &=\text{total mass of orbiting bodies}\\ M &=\text{total mass of orbiting bodies}\\
 P &=\text{orbital periode}\\ P &=\text{orbital periode}\\
-\end{align*}| +\end{align*}  
-|Keplers 3rd Law in simplified units|\begin{equation}+|Keplers 3rd law in simplified units|\begin{equation}
     a^3 = P^2M     a^3 = P^2M
-\end{equation}|\begin{align*}+\end{equation} |\begin{align*}
 a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\
 M &=\text{total mass  of bodies in masses of sun}\\ M &=\text{total mass  of bodies in masses of sun}\\
-P &=\text{orbital periode in years}\\ +P &=\text{orbital period in years}\\ 
-\end{align*}|| +\end{align*}  | 
- +|Keplers 3rd law when mass of planet is much smaller than the star $\frac{M}{M_\odot} \approx 1$ \begin{equation}
-when mass of planet is much smaller than the star, then $\frac{M}{M_\odot} \approx 1$, so: +
-\begin{equation}+
     a^3 = P^2     a^3 = P^2
-\end{equation}+\end{equation} |\begin{align*} 
 +a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ 
 +P &=\text{orbital period in years}\\ 
 +\end{align*}  |
  
-\subsection{Small angle formular} +==== Small angle  ==== 
-\begin{equation}+ 
 +|\begin{equation}
     \frac{D2}{D1} = \sin{\alpha} \approx \alpha      \frac{D2}{D1} = \sin{\alpha} \approx \alpha 
-\end{equation} +\end{equation} |\begin{align*}
-where: +
-\begin{align*}+
 \alpha &= \text{viewing angle (for small angles) in rad}\\ \alpha &= \text{viewing angle (for small angles) in rad}\\
 D1 &=\text{Distance to object in parsec}\\ D1 &=\text{Distance to object in parsec}\\
 D2 &=\text{Extension distance in AU}\\ D2 &=\text{Extension distance in AU}\\
-\end{align*} +\end{align*}|
- +
-^ Formel                             ^ Result    ^ +
-| $\sum_{n=1}^{\infty} \frac{1}{n}$  | $e$       | +
-| $\sum_{n=0}^{\infty} n$            | $\infty$  |+