Show pageOld revisionsBacklinksBack to top This page is read only. You can view the source, but not change it. Ask your administrator if you think this is wrong. ====== Astronomy cheat sheet ====== ===== Constants to know from heart ===== ^Name ^Equation ^Description ^ |c - Velocity of light |$c = 3 * 10^{8}\frac{m}{s}$ |Velocity of light in vacuum | |AU - Astronomical Unit |$1 AU = 1,5 * 10^{11}m$ |The mean distance from earth to sun | |Ly - Lightyear|$1Ly \approx 9,5 * 10^{15}m$ |Distance light travels in one year| |pc - Parsec|$1 pc \approx 3Ly$|One parsec is the dinstance, from wich 1 AU looks like an angle of 1 second| ===== Formulars ===== ==== Keplers 3rd Law ==== ^Name ^ Formula ^ where ^ |Keplers 3rd Law |\begin{align*}a^3 = \frac{GMP^2}{4\pi^2} \end{align*} |\begin{align*} a &= \text{Semi-major axis of elliptical orbit}\\ G &=\text{constant}\\ M &=\text{total mass of orbiting bodies}\\ P &=\text{orbital periode}\\ \end{align*} | |Keplers 3rd law in simplified units|\begin{equation} a^3 = P^2M \end{equation} |\begin{align*} a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ M &=\text{total mass of bodies in masses of sun}\\ P &=\text{orbital period in years}\\ \end{align*} | |Keplers 3rd law when mass of planet is much smaller than the star $\frac{M}{M_\odot} \approx 1$ | \begin{equation} a^3 = P^2 \end{equation} |\begin{align*} a &= \text{Semi-major axis of elliptical orbit in Units of AU}\\ P &=\text{orbital period in years}\\ \end{align*} | ==== Small angle ==== |\begin{equation} \frac{D2}{D1} = \sin{\alpha} \approx \alpha \end{equation} |\begin{align*} \alpha &= \text{viewing angle (for small angles) in rad}\\ D1 &=\text{Distance to object in parsec}\\ D2 &=\text{Extension distance in AU}\\ \end{align*}|